Semiparametric bayesian analysis of nutritional epidemiology data in the presence of measurement error.
نویسندگان
چکیده
We propose a semiparametric Bayesian method for handling measurement error in nutritional epidemiological data. Our goal is to estimate nonparametrically the form of association between a disease and exposure variable while the true values of the exposure are never observed. Motivated by nutritional epidemiological data, we consider the setting where a surrogate covariate is recorded in the primary data, and a calibration data set contains information on the surrogate variable and repeated measurements of an unbiased instrumental variable of the true exposure. We develop a flexible Bayesian method where not only is the relationship between the disease and exposure variable treated semiparametrically, but also the relationship between the surrogate and the true exposure is modeled semiparametrically. The two nonparametric functions are modeled simultaneously via B-splines. In addition, we model the distribution of the exposure variable as a Dirichlet process mixture of normal distributions, thus making its modeling essentially nonparametric and placing this work into the context of functional measurement error modeling. We apply our method to the NIH-AARP Diet and Health Study and examine its performance in a simulation study.
منابع مشابه
Bayesian semiparametric regression in the presence of conditionally heteroscedastic measurement and regression errors.
We consider the problem of robust estimation of the regression relationship between a response and a covariate based on sample in which precise measurements on the covariate are not available but error-prone surrogates for the unobserved covariate are available for each sampled unit. Existing methods often make restrictive and unrealistic assumptions about the density of the covariate and the d...
متن کاملBayesian Semiparametric Density Deconvolution in the Presence of Conditionally Heteroscedastic Measurement Errors.
We consider the problem of estimating the density of a random variable when precise measurements on the variable are not available, but replicated proxies contaminated with measurement error are available for sufficiently many subjects. Under the assumption of additive measurement errors this reduces to a problem of deconvolution of densities. Deconvolution methods often make restrictive and un...
متن کاملRidge Stochastic Restricted Estimators in Semiparametric Linear Measurement Error Models
In this article we consider the stochastic restricted ridge estimation in semipara-metric linear models when the covariates are measured with additive errors. The development of penalized corrected likelihood method in such model is the basis for derivation of ridge estimates. The asymptotic normality of the resulting estimates are established. Also, necessary and sufficient condition...
متن کاملWavelet Threshold Estimator of Semiparametric Regression Function with Correlated Errors
Wavelet analysis is one of the useful techniques in mathematics which is used much in statistics science recently. In this paper, in addition to introduce the wavelet transformation, the wavelet threshold estimation of semiparametric regression model with correlated errors with having Gaussian distribution is determined and the convergence ratio of estimator computed. To evaluate the wavelet th...
متن کاملRobust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data
Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biometrics
دوره 66 2 شماره
صفحات -
تاریخ انتشار 2010